ADVERSE EFFECTS OF ANTIBIOTICS

PERFECTING MONITORING PLANS

Jolanta Piszczek, Pharm D
April 23rd, 2014
OBJECTIVES

• To appreciate common and less common ADRs of select antibiotics
• To structure a reasonable monitoring plan
• To review strategies for management of ADRs
• To diminish the element of surprise
OUTLINE

• Background
• Drugs:
 • Beta-lactams
 • Daptomycin vs. Linezolid
 • Metronidazole
• Reporting
WHY ANTIBIOTICS?

- Well tolerated
- Short term
- Unpredictable...

Figure 1: ADRs by Drug Class

TERMINOLOGY

• Adverse Drug Reactions
 • Untoward event that occurs as a result of an inherent risk of the drug itself when drug is given as intended

• Adverse Event
 • Results from the use of the drug

• Medication Errors
 • Can encompass both

PREVENTABLE VS. NOT

• Medication Errors are always preventable
 • Goal is to minimize their occurrence
• ADRs and AEs can be unforeseen but many are predictable

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Augmented, understood pharmacologic effects</td>
</tr>
<tr>
<td>Type B</td>
<td>Idiosyncratic</td>
</tr>
<tr>
<td>Type C</td>
<td>Chronic Effects</td>
</tr>
<tr>
<td>Type D</td>
<td>Delayed Effects (carcinogenic/ teratogenic)</td>
</tr>
<tr>
<td>Type E, etc.</td>
<td>End-of Treatment</td>
</tr>
</tbody>
</table>

• The goal is to:
 • Measure, Mitigate, Monitor, Minimize
• All of this starts with understanding AEs and putting together a deliberate follow-up plan
CHALLENGES WITH AE

- Most common adverse reactions are detected in premarketing clinical trials (landmark trial)
 - Short duration
 - Patient numbers are low compared to population
 - Extensive exclusion criteria
 - Bias
- Latent or rare ADRs often missed
- 3000 patients at risk is needed to detect with an incidence rate of 1/1000 with 95% certainty
- Additional ADRs are discovered once a drug enters the marketplace
 - Reported by people like you and I
 - Independent research
 - If serious enough – FDA or Health Canada Warning
Adverse Reactions Significant

>10%:

- Gastrointestinal: Diarrhea (5% to 12%), vomiting (3% to 12%), constipation (6% to 11%)
- Hematologic & oncologic: Anemia (2% to 13%)

1% to 10%:

- Cardiovascular: Chest pain (7%), peripheral edema (7%), hypertension (1% to 6%), hypotension (2% to 5%)
- Central nervous system: Insomnia (5% to 9%), headache (5% to 7%), dizziness (2% to 6%), anxiety (5%)
- Dermatologic: Skin rash (4% to 7%), pruritus (3% to 6%), diaphoresis (5%), erythema (5%)
- Endocrine & metabolic: Hypokalemia (9%), hyperkalemia (5%), hyperphosphatemia (3%)
- Gastrointestinal: Nausea (8% to 10%), abdominal pain (8%), dyspepsia (1% to 4%), loose stools (4%), gastrointestinal hemorrhage (2%)
- Genitourinary: Urinary tract infection (2% to 7%)
- Hematologic & oncologic: Eosinophilia (2%), increased INR (2%)
- Hepatic: Increased serum transaminases (2% to 3%), increased serum alkaline phosphatase (2%)
- Infection: Gram-negative organism infection (8%), bacteremia (5%), sepsis (5%), fungal infection (2% to 3%)
- Local: Injection site reaction (3% to 6%)
- Neuromuscular & skeletal: Increased creatine phosphokinase (3% to 9%), limb pain (2% to 9%), back pain (7%), osteomyelitis (6%), weakness (5%), arthralgia (1% to 3%)
- Renal: Renal failure (2% to 3%)
- Respiratory: Pharyngolaryngeal pain (8%), pleural effusion (6%), cough (3%), pneumonia (3%), dyspnea (2% to 3%)
- Miscellaneous: Fever (2% to 7%)

<1% (Limited to post-marketing data, not all cases are captured):

- Neurologic: Seizures, stroke, Guillain-Barré syndrome
- Other: Tachycardia, bradycardia, hypotension, hypertension, tachypnea, mental status changes, increased serum bicarbonate

Unusable Random
WHAT WE ACTUALLY NEED

• Absolute risk of AE vs. placebo
• Contributing risk factors
• Practical head-to-toe monitoring plan
 • Parameter
 • Degree of change
 • Frequency and duration of monitoring
 • Thresholds for changing therapy
 • Who is monitoring
• Management strategies
BETA-LACTAMS
BETA-LACTAMHS

• Most commonly prescribed class of antimicrobials
• Remain one of the safest antibiotic groups prescribed
• With experience
 • Identification of serious ADRs including hematological, renal and neurological
 • Well characterized ADRs
• Generally share AE
TYPE I ALLERGIC REACTIONS

• Important when eliciting history
• IgE mediated reactions
 • Incidence of anaphylaxis: 0.01-0.05%
 • Laryngeal edema, hypotension, angioedema, wheezing, urticaria, pruritus
 • Most occur within 4 hours; 1 hour in a sensitized host
 • Highly unusual to see a Type I reaction after 72 hours
 • Pruritus and hives 1-2 days later is a mild Type I reaction (1%)
 • 80% of patients lose their antibodies after 10 years

• For drug-naive patients:
 • Explain reaction
 • Reassure patient
 • Alert nursing staff
 • Treatment is IM epinephrine

Mayo Clin Proc 2005;80:405-10
JAMA 2001;285:2498-505
HEMATOLOGIC ADRS

<table>
<thead>
<tr>
<th></th>
<th>Type II reaction</th>
<th>Non-allergic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Formation of IgM and IgG Abs against blood cells causing cytotoxic effects</td>
<td>Direct toxic effects on myeloid precursors</td>
</tr>
<tr>
<td>Most common</td>
<td>Hemolytic anemia</td>
<td>Neutropenia</td>
</tr>
<tr>
<td>manifestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>1:1,000,000</td>
<td>1.5:100,000</td>
</tr>
<tr>
<td>Main risk factor</td>
<td>Dose</td>
<td>Duration</td>
</tr>
<tr>
<td>Onset</td>
<td>Mean = 3 weeks</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Asymptomatic, sudden drop of Hg</td>
<td>Generalized symptoms, can be more gradual</td>
</tr>
<tr>
<td>Management</td>
<td>Immediate d/c of drug, do not re-challenge, no cross-reactivity</td>
<td>Have a threshold for d/c, ? re-challenge</td>
</tr>
</tbody>
</table>

TYPE III ALLERGIC REACTIONS

- Antibody-antigen complexes precipitate in tissue, activate complement and cause tissue damage
- Late reaction occurring 7-10+ days post-exposure
- Most elusive
- Result in a variety of clinical syndromes that can affect any end organ
 - Most common: vasculitis (palpable purpura)
 - Serum-sickness
 - Drug fever (diagnosis of exclusion)
- Incidence is 4:10,000
- Self limiting upon discontinuation
NEUROLOGIC REACTIONS

- Penicillins are the most common drug cause of encephalopathy
 - “Toxic metabolic encephalopathy”
- Not just seizures
 - Change in consciousness
 - Somnolence
 - Stupor
 - Confusion
- Quite common (10%)
- Apparent within 1st week of therapy
- High doses, especially IV
 - Management is dose reduction if possible
- Risk factors: renal dysfunction, underlying CNS abnormalities

RENAL REACTIONS

- Can be Type III (serum-sickness)
- Acute interstitial nephritis
 - Type IV allergic reaction
 - Drug activates T-cells, then eosinophils
 - Inflammatory cellular infiltrate in the interstitium
 - Features:
 - Sudden and rapid increase in serum creatinine
 - Oligouria (50%)
 - Rash/fever/eosinophilia (25%)
 - Nausea, vomiting and malaise
 - Biopsy confirmed
 - Drug should be discontinued immediately; no re-challenge; careful with cross-reactivity
- Type IV reactions also include drug exanthems (2%)
 - Rarely dangerous and managed with antihistamines

Kidney International (2010) 77, 956–961
MONITORING PLAN SUMMARY

<table>
<thead>
<tr>
<th>Organ</th>
<th>ADR</th>
<th>When/How long/Who/How</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>IgE-mediated</td>
<td>1<sup>st</sup> dose (4h)</td>
<td>IM Epinephrine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First 72 hours Patient/Nurse</td>
<td></td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Serum Sickness</td>
<td>7-10 days Ongoing</td>
<td>Stop drug</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check for organ involvement, generalized sx and Complement</td>
</tr>
<tr>
<td>Type IV skin</td>
<td>reactions</td>
<td>Within days Ongoing</td>
<td>Ask to tolerate Antihistamine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ongoing</td>
<td></td>
</tr>
<tr>
<td>CNS</td>
<td>Mental status ∆s</td>
<td>Within days Ongoing</td>
<td>Dose decrease</td>
</tr>
<tr>
<td></td>
<td>Stupor</td>
<td></td>
<td>Check renal fx</td>
</tr>
<tr>
<td></td>
<td>Somnolence</td>
<td></td>
<td>Re-challenge OK</td>
</tr>
<tr>
<td></td>
<td>Seizures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBC</td>
<td>Hemoglobin</td>
<td>Weekly</td>
<td>Have a threshold</td>
</tr>
<tr>
<td></td>
<td>Neutrophils</td>
<td>Differentiate between sudden</td>
<td>Stop drug/no re-challenge if HA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drops and gradual changes</td>
<td></td>
</tr>
<tr>
<td>CrCl</td>
<td>AIN</td>
<td>Weekly</td>
<td>Stop drug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daily if sudden drop, add</td>
<td>No re-challenge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>urinalysis</td>
<td></td>
</tr>
</tbody>
</table>
DAPTOMYCIN
LINEZOLID
A TALE OF TWO CITIES

Protein binding
Distribution
Use
MECHANISM OF ACTION AND ADRS

- Linezolid binds to the 50S ribosomal subunit
- Bacteriostatic

- Daptomycin disrupts the membrane by forming ion-conducting structures that cause the efflux of K+
- Bactericidal
DAPTOMYCIN PHARMACODYNAMICS

• MSK Effects:
 • High affinity for protein + intravascular drug
 • Ability to reach large muscles and attach to myocytes
 • Leakage of creatinine phosphokinase (CK) from cells
 • CK increases of 2X UNL occurs in ~7% of patients; Rhabdomyolysis 0.2%
 • Usually occurs with 1 week of use or longer
 • Risk factors include statin use and renal dysfunction
 • Time between doses has been shown to be protective

Pharmacology 2008;81:79–91
Clinical Infectious Diseases 2010; 50(11):63
DAPTOMYCIN PD CONT.

- **Respiratory ADRs**
 - Oligomerizes
 - Binds pulmonary surfactant
 - Accumulates in the lungs causing epithelial injury
 - Lung injury such as eosinophilic pneumonia and chronic pneumonitis have been described
 - Cough and sore throat quite common (8%)

- **Electrolyte disturbances**
 - Causes efflux of electrolytes, especially K+
 - Kidneys should compensate
 - Hyper AND hypokalemia is seen
 - Hyperphosphotemimia also reported

LINEZOLID PHARMACODYNAMICS

• Hematological adverse effects
 • Distributes to bone + mitochondrial toxicity
 • Direct marrow suppression: thrombocytopenia (Immune-mediated also), anemia, leukopenia
 • Thrombocytopenia occurs in 1/3 of patients treated with linezolid
 • Reports of bleeding and transfusions
 • Other blood dyscrasias also common but not as limiting
 • Occur as early as 7 days
 • Dose and duration related
 • Reversible, re-challenge OK
 • Report of treatment with B6

LINEZOLID PD CONT.

- Neuropathy
 - Also a manifestation of mitochondrial dysfunction
 - “Glove and Stocking” sensory impairment
 - Optic neuropathy
 - Decreased visual acuity
 - Floaties
 - Diminished color perception
 - Optic neuropathy tends to resolve
 - Peripheral neuropathy tends to be permanent
 - Associated with prolonged administration (30 days)

- Lactic acidosis can rarely occur
 - Thought to occur due to the same mechanism

Monitoring Plans

<table>
<thead>
<tr>
<th>Dapto</th>
<th>ADR</th>
<th>When/How long/Who/How</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSK</td>
<td>Myalgia Rhabdomyolysis</td>
<td>Check baseline CK CK weekly</td>
<td>Have a threshold (usually 4X UNL) D/C or lower statins</td>
</tr>
<tr>
<td>‘Lytes</td>
<td>Hypo/hyperkalemia Hyperphosphotemia</td>
<td>Weekly K+ Other electrolytes if K abnormal</td>
<td>D/C other offenders Will not improve unless drug is stopped</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linezolid</th>
<th>ADR</th>
<th>When/How long/Who/How</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>Cytopenias</td>
<td>CBC weekly if using >14d Ongoing</td>
<td>Have a threshold (usually 100 for platelets)</td>
</tr>
<tr>
<td>Neuro</td>
<td>Optic neuropathy Peripheral neuropathy</td>
<td>Ongoing Done by patient Ophthalmologist referral if suspected</td>
<td>Stop drug Vitamin B6 may be useful</td>
</tr>
<tr>
<td>General</td>
<td>Lactic acidosis</td>
<td>Lactate if general malaise, weakness, N&V</td>
<td>Stop drug</td>
</tr>
</tbody>
</table>
METRONIDAZOLE
METRONIDAZOLE

- 2nd most frequently used antibiotic at IH after beta-lactams
- Well loved for its anaerobic coverage
- MoA: disrupts DNA of microbial cells by preventing nucleic acid synthesis
 - Molecule needs to be partially reduced for it to work
- Good safety profile
- Excellent tissue penetration
- Prototype of a GI upset drug
GASTROINTESTINAL ADRS

• GI issues are the most common ADRs of antibiotics
 • Diarrhea
 • Nausea and vomiting
• Diarrhea is related to quantitative and qualitative changes in the intestinal microflora
 • Unabsorbed or secreted antibiotics
 • Other mechanisms possible
• Independent risk factor for acquisition and infection with c. difficile
• Nausea and vomiting can have numerous etiologies
 • For antibiotics it is mainly chemically induced
 • Local effects
 • Direct effects

J Antimicrob Chemother 2001; 47:43–50
NAUSEA

- Quick onset, tolerance develops quickly
- Large psychosomatic component
 - Patient interview is important
- Bedtime administration
- Strategies to lessen degree of mucosal irritation
 - Food
 - Water
 - Dividing the dose
- Treatment trial is warranted (give regularly for 2-3 d)
 - Haloperidol 0.5-1 mg q12h
 - Prochlorperazine 5-10mg q8h
 - Ondansetron is potent and can be used pre-dose
 - Avoid pro-kinetics

Gastroenterolgy 2001; 120(1):263-286
AFP 2007;76;76-84.
NON-CDI AAD

- Tends to not improve
- If mild, can be tolerated
- Anti-motility agents such as loperamide are not recommended
 - If severe, drug has to be discontinued
 - 2-3 days for drug to be eliminated from the bowel
- Dietary tips
 - Hydration
 - Small, frequent meals
 - Cutting out irritating foods
 - Soluble fiber (oats and barley)
Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea
A Systematic Review and Meta-analysis

Hempel S et al. JAMA 2012; 307:1959-69
HEMPEL ET AL

- Objective: to evaluate the evidence for probiotic use in the prevention and treatment of AAD
- 82 RCTs evaluated
 - RR = 0.58 [95% CI 0.50-0.68]
 - Lactobacillus alone (N=17) RR=0.64 [95% CI 0.47-0.86]
 - Sacchromyces alone (N=15) RR = 0.48 [95% CI 0.35-0.65]
PROBIOTICS

- Largest systematic review/meta-analysis
 - 42% lower risk of developing ADD when given probiotics
 - NNT = 13
 - Insensitive to various subgroup analyses
 - Large enough to pool similar probiotics

- Limitations
 - Significant heterogeneity
 - External validity (who, how long, which antibiotic etc).

- Recommendations (if any)
 - Saccharomyces 250-500mg PO BID during and up to 2 weeks after
 - Lactobacillus sp. 1 billion CFUs TID
 - Plain yoghurt is not unreasonable

Hempel S et al. JAMA 2012; 307:1959-69
METRONIDAZOLE TIPS

• Is it necessary?
• Mask metallic taste
 • Capsules if available
• Dose
 • 500mg q12h may be sufficient
• PO vs. IV
 • For metronidazole there is no difference
MONITORING PLAN GI ADRS

<table>
<thead>
<tr>
<th>ADR</th>
<th>When/How long/Who/How</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td>Nausea and vomiting</td>
<td>Psychological</td>
</tr>
<tr>
<td></td>
<td>First day, then daily x 3 days Patient interview is key</td>
<td>Dietary Medications</td>
</tr>
<tr>
<td>AAD</td>
<td>Ongoing Nursing staff to ↑ objectivity</td>
<td>Establish a baseline Have a threshold for d/c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probiotics may be useful</td>
</tr>
</tbody>
</table>
REPORTING

• Health Canada online
 • 5 step process
• Enlist your pharmacist
• Manufacturer will be contacted by Health Canada and may contact you
• Write it up if it’s cool!
• Ideal
 • Nested case controls
 • Systematic review
SUMMARY

Pharmacokinetic Knowledge

Risk Assessment

Mitigation Strategies

Monitoring Plan

Team Approach (incl. patient)

Prevention and Minimization of Damage of ADRs
KEEP CALM AND BE AWESOME

THANK YOU!

QUESTIONS?